Термические напряжения - определение. Что такое Термические напряжения
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Термические напряжения - определение

Идеальный источник напряжения; Источник напряжения; Генератор напряжения
  • Рисунок 4. Обозначения источника напряжения на схемах
Найдено результатов: 40
Термические напряжения      

напряжения, возникающие в связи с изменением теплового состояния тел при их нагреве, охлаждении, а также длительном пребывании при повышенной или пониженной температуре. Пример Т. н. - напряжения, возникающие при закалке стальных деталей; в этом случае Т. н. представляют собой сочетание напряжений, обусловленных изменением удельного объёма стали при её мартенситном превращении (См. Мартенситное превращение) в процессе закалки, и температурных напряжений, вызванных быстрым охлаждением. Действие Т. н., например разрушение (растрескивание) при закалке, может проявляться не в момент изменения теплового состояния (охлаждения), а спустя некоторое время (иногда спустя несколько сут) в результате постепенного накопления напряжений, возникающих при изменении удельных объёмов структурных составляющих.

ТЕРМИЧЕСКИЕ НАПРЯЖЕНИЯ      
то же, что температурные напряжения.
Источник ЭДС         
Исто́чник ЭДС (идеа́льный источник напряже́ния) — двухполюсник, напряжение на зажимах которого не зависит от тока, протекающего через источник и равно его ЭДС. ЭДС источника может быть задана либо постоянным, либо как функция времени, либо как функция от внешнего управляющего воздействия. В простейшем случае ЭДС определена как константа, обычно обозначаемая буквой \mathcal{E}.
СТАБИЛИЗАТОР ЭЛЕКТРИЧЕСКИЙ         
  • Микросхема линейного стабилизатора КР1170ЕН8
  • электрического потенциала]].
  • Простейшая схема параметрического стабилизатора
  • Последовательный компенсационный стабилизатор с применением операционного усилителя
  • Феррорезонансный стабилизатор для питания цветных ламповых телевизоров, СССР, 1970-е — 1980-е гг.
устройство, автоматически поддерживающее в электрической цепи заданные напряжение, ток или мощность при изменениях (в определенных пределах) параметров питающей сети или нагрузки в цепи. Наиболее распространены стабилизаторы электрического напряжения и тока.
Стабилизатор электрический         
  • Микросхема линейного стабилизатора КР1170ЕН8
  • электрического потенциала]].
  • Простейшая схема параметрического стабилизатора
  • Последовательный компенсационный стабилизатор с применением операционного усилителя
  • Феррорезонансный стабилизатор для питания цветных ламповых телевизоров, СССР, 1970-е — 1980-е гг.

устройство для автоматического поддержания постоянства значения электрического напряжения на входах приёмников электрической энергии (стабилизатор напряжения) или силы тока в их цепях (стабилизатор тока) независимо от колебаний напряжения в питающей сети и величины нагрузки.

Для стабилизации (См. Стабилизация) напряжения применяют ферромагнитные, в том числе феррорезонансные, С. э., действие которых основано на использовании явления магнитного насыщения ферромагнитных сердечников трансформаторов или дросселей, и электронные (преимущественно на полупроводниковых приборах, реже - на электронных лампах) стабилизаторы, в которых стабилизация осуществляется методом регулирования по отклонению (см. Регулятор автоматический). В СССР изготовляются однофазные и трёхфазные С. э. переменного напряжения (преимущественно ферромагнитные) мощностью от нескольких десятков ва до сотен ква и С. э. постоянного напряжения (в основном полупроводниковые) мощностью от нескольких вт до нескольких десятков квт.

Стабилизация тока, как правило постоянного, осуществляется либо при помощи электронных приборов с резко выраженной нелинейностью вольтамперной характеристики (Бареттер, электровакуумный Диод), либо электронными усилителями с отрицательной обратной связью (См. Обратная связь) по току. При постоянной нагрузке ток в ней может быть стабилизирован также посредством стабилизатора напряжения.

Особенно широкое распространение получили феррорезонансные С. э. для стабилизации переменного напряжения (обычно промышленной частоты) в цепях питания контрольно-измерительных приборов, регулирующих и исполнительных устройств промышленной электроавтоматики, электроприборов и радиоаппаратуры бытового назначения (мощностью от десятков ва до нескольких ква). На рис. представлен С. э. напряжения для питания телевизоров и радиоприёмников от сети с напряжением 127/220 в (в стабилизаторе имеется колодка для переключения выводов автотрансформатора при переходе от одного номинала напряжения к другому). Дроссель Др 1 работает в режиме насыщения, поэтому колебания сетевого напряжения практически не влияют на его магнитный поток; для компенсации незначительных колебаний служит вспомогательная обмотка wk. Ненасыщенный дроссель Др 2 и конденсатор С образуют феррорезонансный контур, с которого снимается выходное стабилизированное напряжение. Внутреннее сопротивление С. э. значительно меньше сопротивления номинальной нагрузки. Такой стабилизатор при напряжении сети 127 ± 19/38 или 220 ± 33/66 в (при колебаниях частоты в пределах 49,5-50,5 гц) обеспечивает выходное напряжение 220 ± 11/22 в, т. е. коэффициент стабилизации 3\%.

Лит. см. при ст. Стабилизация в автоматическом управлении и регулировании.

М. М. Майзель.

Электрическая схема феррорезонансного стабилизатора напряжения: Uвх - напряжение сети 127/220 в; Uвых - стабилизированное напряжение 220 в; Др 1 - насыщенный дроссель; Др 2 - ненасыщенный дроссель; АТР - автотрансформатор; С - конденсатор; Пр 1, Пр 2 - предохранители для сетевого напряжения 220 и 127 в; wk - компенсационная обмотка; Л - контрольная лампочка.

Стабилизатор напряжения         
  • Микросхема линейного стабилизатора КР1170ЕН8
  • электрического потенциала]].
  • Простейшая схема параметрического стабилизатора
  • Последовательный компенсационный стабилизатор с применением операционного усилителя
  • Феррорезонансный стабилизатор для питания цветных ламповых телевизоров, СССР, 1970-е — 1980-е гг.
Стабилиза́тор напряже́ния () — электромеханическоеНапример, реле-регулятор вибрационного типа для стабилизации напряжения автомобильного генератора. или электрическое (электронное) устройство, имеющее вход и выход по напряжению, предназначенное для поддержания выходного напряжения в узких пределах, при существенном изменении входного напряжения и выходного тока нагрузки.
Импульсный стабилизатор напряжения         
  • '''Импульсный блок питания компьютера (ATX) со снятой крышкой'''<br>
'''A''' — входной выпрямительный мост и фильтр помех.<br>
'''B''' — конденсаторы входного фильтра, правее — радиатор высоковольтных транзисторов.<br>
'''C''' — трансформатор, правее — радиатор низковольтных диодов.<br>
'''D''' — выходной дроссель.<br>
'''E''' — конденсаторы выходного фильтра.<br>
Ниже '''E''' — дроссель и конденсатор входного фильтра на сетевом разъёме
  • Преобразователь с повышением напряжения
  • Преобразователь с понижением напряжения
  • Инвертирующий преобразователь
СТАБИЛИЗАТОР НАПРЯЖЕНИЯ, В КОТОРОМ РЕГУЛИРУЮЩИЙ ЭЛЕМЕНТ РАБОТАЕТ В ИМПУЛЬСНОМ РЕЖИМЕ
Импульсный блок питания; Импульсный преобразователь напряжения; Ключевой стабилизатор напряжения; Импульсный источник питания
И́мпульсный стабилиза́тор напряже́ния (ключево́й стабилизатор напряжения, используются также названия импульсный преобразователь, импульсный источник питания) — стабилизатор напряжения, в котором регулирующий элемент (ключ) работает в импульсном режиме, то есть регулирующий элемент периодически открывается и закрывается.
Инвертор (электротехника)         
  • Ларионов]]-звезда»
  • Инверторы SMA Solar
  • Синусоида, снятая в сети 220. Верхушки срезаны из-за большого числа импульсных преобразователей
  • Модифицированный синус, снятый с ИБП, работающего от аккумулятора
  • Инвертор напряжения с нулевым выводом трансформатора
  • deadlink=no }}</ref>. Преобразует постоянное напряжение бортовой сети (12 В) в переменное напряжение бытовой электросети (220 В)
  • Каскадная топология цепи инвертора и соответствующая ей форма волны сигнала.
  • Мостовой инвертор напряжения с трансформатором
  • Один участок фазы инвертора с (а) двумя уровнями, ( b) тремя уровнями, (с) n-количеством уровней
  • Мостовой ИН без трансформатора
УСТРОЙСТВО ДЛЯ ПРЕОБРАЗОВАНИЯ ПОСТОЯННОГО ТОКА В ПЕРЕМЕННЫЙ
Инверторная система; Инвертор напряжения; Инверторы напряжения
Инве́ртор — устройство для преобразования постоянного тока в переменныйСловарь по естественным наукам. Глоссарий.ру. с изменением величины напряжения. Обычно представляет собой генератор периодического напряжения, по форме приближённого к синусоиде, или дискретного сигнала.
Преобразователь электрической энергии         
  •  Пример повышающего (step-up) преобразователя, — автомобильный инвертор. Преобразует постоянное напряжение бортовой сети (12V) в переменное 220V.
ПРОЦЕСС
Преобразователь напряжения
Преобразователь электрической энергии — электротехническое устройство, преобразующее электрическую энергию с одними значениями параметров и/или показателей качества в электрическую энергию с другими значениями параметров и/или показателей качества.ГОСТ Р 50369-92 Электроприводы. Термины и определения Для реализации преобразователей широко используются полупроводниковые приборы, так как они обеспечивают высокий .
Электрохимический ряд активности металлов         
  • стандартного электрохимического потенциала]])
Электрохимический ряд активности металлов (ряд напряжений, ряд (вытеснения) Бекетова, ряд стандартных электродных потенциалов) — последовательность, в которой металлы расположены в порядке увеличения их стандартных электрохимических потенциалов E0, отвечающих полуреакции восстановления катиона металла Men+: Men+ + nē → Me

Википедия

Источник ЭДС

Исто́чник ЭДС (идеа́льный источник напряже́ния) — двухполюсник, напряжение на зажимах которого не зависит от тока, протекающего через источник и равно его ЭДС. ЭДС источника может быть задана либо постоянным, либо как функция времени, либо как функция от внешнего управляющего воздействия. В простейшем случае ЭДС определена как константа, обычно обозначаемая буквой E {\displaystyle {\mathcal {E}}} .

Что такое Терм<font color="red">и</font>ческие напряж<font color="red">е</font>ния - определение